
fpls-12-587482 February 17, 2021 Time: 12:30 # 1

ORIGINAL RESEARCH
published: 18 February 2021

doi: 10.3389/fpls.2021.587482

Edited by:
Jorge Rodriguez-Celma,

John Innes Centre, United Kingdom

Reviewed by:
Cheng Jinping,

Nanjing Agricultural University, China
Hongsheng Zhang,

Nanjing Agricultural University, China

*Correspondence:
C. N. Neeraja

cnneeraja@gmail.com

Specialty section:
This article was submitted to

Plant Nutrition,
a section of the journal

Frontiers in Plant Science

Received: 26 July 2020
Accepted: 06 January 2021

Published: 18 February 2021

Citation:
Suman K, Neeraja CN,

Madhubabu P, Rathod S, Bej S,
Jadhav KP, Kumar JA, Chaitanya U,

Pawar SC, Rani SH, Subbarao LV and
Voleti SR (2021) Identification

of Promising RILs for High Grain Zinc
Through Genotype × Environment

Analysis and Stable Grain Zinc QTL
Using SSRs and SNPs in Rice (Oryza

sativa L.).
Front. Plant Sci. 12:587482.

doi: 10.3389/fpls.2021.587482

Identification of Promising RILs for
High Grain Zinc Through Genotype ×

Environment Analysis and Stable
Grain Zinc QTL Using SSRs and
SNPs in Rice (Oryza sativa L.)
K. Suman1,2, C. N. Neeraja1* , P. Madhubabu1, Santosha Rathod1, Sonali Bej1,
K. P. Jadhav1, J. Aravind Kumar1, U. Chaitanya1, Smita C. Pawar2, Surekha H. Rani2,
Lella V. Subbarao1 and Sitapati R. Voleti1

1 ICAR–Indian Institute of Rice Research, Hyderabad, India, 2 Department of Genetics & Biotechnology, Osmania University,
Hyderabad, India

Polished rice is one of the commonly consumed staple foods across the world. However,
it contains limited nutrients especially iron (Fe) and zinc (Zn). To identify promising
recombinant inbred lines (RILs) for grain Zn and single plant yield, 190 RILs developed
from PR116 and Ranbir Basmati were evaluated in two environments (E1 and E2).
A subset of 44 contrasting RILs for grain Zn was screened in another two environments
(E3 and E4). Phenotypic data was collected for 10 traits, viz., days to 50% flowering,
plant height, panicle length, number of tillers, single plant yield (SPY), test weight, Fe
and Zn in brown (IBR, ZBR), and polished rice (IPR, ZPR). Stepwise regression analysis
of trait data in 190 RILs and a subset of 44 RILs revealed the interdependence of ZPR,
ZBR, IPR, and IBR and the negative association of grain Zn with single plant yield.
Based on the additive main effect and multiplicative interaction (AMMI) and genotype
and genotype × environment interaction (GGE) analyses of the subset of 44 RILs across
four environments (E1–E4), six promising RILs were identified for ZPR with >28 ppm.
Mapping of 190 RILs with 102 simple sequence repeats (SSRs) resulted in 13 QTLs
for best linear unbiased estimates (BLUEs) of traits including advantage over check
(AOC). Using genotype-based sequencing (GBS), the subset of 44 RILs was mapped
with 1035 single-nucleotide polymorphisms (SNPs) and 21 QTLs were identified. More
than 100 epistatic interactions were observed. A major QTL qZPR.1.1 (PV 37.84%)
and another QTL qZPR.11.1 (PV 15.47%) were identified for grain Zn in polished rice.
A common major QTL (qZBR.2.1 and qZPR.2.1) was also identified on chromosome 2
for grain Zn content across SSR and SNP maps. Two potential candidate genes related
to transporters were identified based on network analyses in the genomic regions of
QTL < 3 Mb. The RILs identified for grain Zn and SPY were nominated for national
evaluation as under rice biofortification, and two QTLs identified based on BLUEs could
be used in the rice biofortification breeding programs.

Keywords: rice, grain zinc, RILs, stability, QTL, SSR, SNP

Frontiers in Plant Science | www.frontiersin.org 1 February 2021 | Volume 12 | Article 587482

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.587482
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.587482
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.587482&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/articles/10.3389/fpls.2021.587482/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-587482 February 17, 2021 Time: 12:30 # 2

Suman et al. QTLs for Rice Grain Zinc

INTRODUCTION

Rice (Oryza sativa L.) is an important staple food for several
countries across the world. More than 50% of the calorific needs
are met by rice for most of the population in many Asian
countries1. While brown rice (unpolished) is a good source
of nutrients and vitamins, polished rice which is devoid of
most of the important nutrients is the most preferred form of
consumption (Nachimuthu et al., 2015; Pradhan et al., 2020; Rao
et al., 2020). Most of the modern high-yielding rice varieties are
reported to be poor in nutrient content after polishing (Anandan
et al., 2011; Swamy et al., 2016). Hence, improvement in the
nutritive value of polished rice would have a direct impact the
nutrition security of consumers who are excessively or solely
dependent on rice.

Micronutrient malnutrition or hidden hunger is widely spread
in developing countries, especially among poor populations,
whose daily caloric intake is mainly confined to staple cereals
(White et al., 2012; Cakmak and Kutman, 2018; Garcia-Oliveira
et al., 2018). Dietary diversification, supplementation, and
postharvest food fortification are some of the possible important
strategies to address malnutrition (Bouis et al., 2019). Of the
various strategies to address malnutrition, biofortification is one
of the promising approaches because of its sustainability and
affordability (Bouis and Welch, 2010). Biofortification is the
process of increasing the density of vitamins and minerals in
a crop through plant breeding using conventional methods or
genetic engineering or through agronomic practices. Breeding
rice varieties with higher mineral densities can help in tackling
hidden hunger in most of the Asian countries (Bouis et al., 2013;
Swamy et al., 2016).

Iron (Fe) and zinc (Zn) are critical among the essential
micronutrients required for human health. More than two billion
people across the world, mostly children and pregnant and
lactating women, suffer from Fe and Zn deficiencies (Wessells
and Brown, 2012). Fe is the main component of hemoglobin
and is important for oxygen transport, DNA synthesis, and
electron transport (Abbaspour et al., 2014). Zn is required for the
functioning of >300 enzymes and >1000 transcription factors
and is the second messenger of immune cells in the human body
(Prasad, 2013). For plants, also Fe and Zn are vital elements
promoting plant growth and development (Grotz and Guerinot,
2006; Teklić et al., 2013). For Fe, a wide range of genetic variation
ranging from 2 to 147 ppm was reported in brown rice (Zeng
et al., 2010). With the polishing losses of Fe up to 85%, the
observed variability for Fe in polished rice was found to be very
limited (Prom-u-thai et al., 2007; Sperotto et al., 2012).

A wide genetic variability for grain Zn content is reported
in brown and polished rice in the germplasm. Zn content in
brown rice ranged from 7.3 to 58.4 ppm, and that in polished rice
ranged from 4.8 to 40.9 ppm with polishing losses of 11.1 to 28%
(Rao et al., 2020).

Rice grain Zn content is a quantitative trait and is dependent
on several processes such as uptake from soil, assimilation
within the plant, and remobilization into the grain (Sperotto

1www.ricepedia.org

et al., 2014; Garcia-Oliveira et al., 2018). It is also influenced
by environmental factors such as soil and water (Wissuwa
et al., 2008). Thus, developing Zn-biofortified rice varieties is
difficult owing to the complex genetics, environment effects,
and genetic interactions such as epistasis (Zhang et al., 2014;
Pradhan et al., 2020). Characterization of promising breeding
lines for high grain Zn by multivariate techniques such as biplots,
Additive Main effects and Multiplicative Interaction (AMMI) and
Genotype main effects, and G × E interaction effects (GGE)
would partition the G × E interactions for the target trait
(Gauch and Zobel, 1997; Li et al., 2017). Identification of markers
linked with quantitative trait loci (QTL) for grain Zn content
would expedite the development of rice biofortified varieties
through marker-assisted breeding (Neeraja et al., 2017). QTL
mapping provides opportunities for identification of the genomic
region(s) associated with the targeted traits by combining
genome information with phenotyping. Subsequently identified
genomic region(s)/QTLs/genes could be deployed in the breeding
programs through marker-assisted selection (MAS) (Collard and
Mackill, 2008). Several major and stable QTLs through MAS have
been introgressed in rice toward the development of varieties
with target traits (Hasan et al., 2015).

Using bi-parental mapping populations, 22 independent
studies have reported 220 QTLs for grain Fe and Zn in rice using
simple sequence repeat (SSR) markers or candidate gene-based
markers (Raza et al., 2019). Interactions among the identified
QTLs for grain Zn were also studied for characterization of QTL
interaction effects on the phenotypic expression of trait (Swamy
et al., 2018a; Descalsota-Empleo et al., 2019a; Calayugan et al.,
2020). Single-nucleotide polymorphisms (SNPs) are now being
preferred as markers not only because of their abundance and
uniform distribution in the genome but also for their precision,
speed, and low cost (He et al., 2014; Varshney et al., 2018).
Genotyping-by-sequencing (GBS) is a modified highly efficient
and cost-effective approach for simultaneous genome-wide SNP
discovery and genotyping (Elshire et al., 2011). A modified GBS
technique is based on two restriction enzymes comprising rare
cutting and frequently cutting as double-digest restriction-site-
associated DNA sequencing (ddRAD-seq) for enhancing the
stability of selected genomic regions (Peterson et al., 2012). GBS is
being deployed in many crop genomics studies (Gali et al., 2019;
Sudan et al., 2019; Dissanayaka et al., 2020) and also in rice (De
Leon et al., 2016; Furuta et al., 2017; Bhatia et al., 2018; Yadav
et al., 2019; Babu et al., 2020).

From the reported mapping studies for grain Zn in rice,
numerous genetic loci with minor to major effects were found
to be distributed throughout the genome. Hence, we selected
SNPs as the markers of choice due to their abundant distribution
across the chromosomes in addition to the SSR markers for
identification of QTLs for grain Zn and Fe along with yield and
yield-related traits in a RIL population derived from PR116 and
Ranbir Basmati. Thus, the objectives of the present study were
i. to characterize the variability of the RIL population across
environments for their grain Zn and Fe content, yield, and agro-
morphological traits; ii. to assess the association and relationship
among the traits for grain Zn and yield; iii. to identify stable
lines from the RIL population for grain Zn and yield across
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environments; and iv. to identify QTLs for grain Zn, yield,
and agro-morphological traits using SSRs and SNPs along with
interaction and environment effects.

MATERIALS AND METHODS

Field Experimental Details
The experiments were performed in the Indian Council
of Agricultural Research (ICAR)-Indian Institute of Rice
Research (IIRR), Hyderabad, India (17.53◦N latitude and
78.27◦E longitude, 545 mm rainfall), during four environments
[Environment 1 wet season (WS) 2016; Environment 2 dry
season (DS) 2017; Environment 3 WS 2017; and Environment
4 DS 2018]. The details of temperature, rainfall, and soil
characteristics were given in Supplementary Table 1. A set of
190 RILs with two parents was grown during Environment 1 (E1)
and Environment 2 (E2), and a subset of 44 contrasting RILs for
grain Zn with two parents was grown during Environment 3 (E3)
and Environment 4 (E4) following randomized complete block
design (RCBD). Recommended packages of rice crop production
and protection practices were followed for raising healthy crop.

Plant Material
A recombinant inbred population (RIL) was developed from
the cross between PR116 (pedigree: PR108/PAU 1628//PR108;
released in 2000; mean yield of 5–6 tons/ha; Zn: 19.1 ppm in
brown rice; 15.7 ppm in polished rice) as recipient parent for
grain Zn and Ranbir Basmati (pure line selection from Basmati
370-90-95; released in 1996; mean yield of 2–2.5 tons/ha; Zn:
27.5 ppm in brown rice; 23.4 ppm in polished rice) as donor
parent for high grain Zn using the single seed descent (SSD)
method. Each RIL was planted in four rows, and each row
consisted 15 plants with a spacing of 20 × 15 cm. Five uniform
tagged plants from center rows were considered for observation
across all environments.

Measurement of Phenotypic Traits
Observations for RILs and parents were noted for days to 50%
flowering (DFF), plant height (PH), number of tillers per plant
(NT), panicle length (PL) and single plant yield (SPY) along with
the grain Zn and Fe in brown and polished rice.

Estimation of Grain Zn and Fe
For estimation of grain Zn in brown rice (ZBR), Fe in brown
rice (IBR), Zn in polished rice (ZPR), and Fe in polished rice
(IPR), seed samples were dehusked using the JLGJ4.5 rice husker
(Jingjian Huayuan International Trade Co., Ltd., China) and
polished with a polisher with non-ferrous components (Krishi
International India Ltd., India). The seed from five plants
was pooled and divided into three parts for analyses as three
replicates. After thorough cleaning, each sample of brown and
polished rice (5 g) was analyzed for Fe and Zn by energy
dispersive X-ray fluorescent spectrophotometer (ED-XRF) as per
the standardized protocols (Rao et al., 2014). In rice, promising
breeding lines are selected based on their significant yield
advantage over the check variety (Virk et al., 1996; Witcombe
et al., 2013). Based on the same concept, in the present study, we

considered advantage of over check (AOC) for, viz., grain Zn and
Fe content over donor parent (with high grain Zn and Fe content)
and grain yield over recipient parent (with high single plant
yield). The advantage of grain Zn and Fe content and yield in RILs
were calculated as advantage over check (AOC) percentage.

Grain Quality Characters
Two hundred and fifty grams of brown rice of each RIL along
with parents harvested during DS2018 was analyzed for 13 grain
quality traits/parameters, viz., HULL (hulling per cent), MILL
(milling per cent), HRR (head rice recovery per cent), KL (kernel
length in mm), KB (kernel breadth in mm), KL/KB (kernel
length/breadth ratio), VER (volume expansion ratio in mm), WU
(water uptake in mL), KLAC (kernel length after cooking in mm),
ER (elongation ratio in mm), ASV (alkali spreading value), AC
(amylose content per cent), and GC (gel consistency in mm)
by standard protocols at ICAR-IIRR. KL, KB, and KL/KB were
determined by vernier calipers (Yadav and Jindal, 2007). HULL
and MILL were recorded using a dehusker and miller (Satake
Corporation, Japan). The HRR (Khush et al., 1979), WU, KLAC,
ER, VER, ASV, AC, and GC were measured by standard methods
(Juliano, 1971; Fitzgerald et al., 2009; Suman et al., 2020).

Quantification of Grain Phytic Acid and
Inorganic Phosphorous (Pi)
Grain phytic acid and inorganic phosphorous were determined
as described by Lorenz et al. (2007) with minor modifications.
To 100 mg grain powder of polished rice from each RIL in a 2-
ml Eppendorf tube, 2 ml of 0.65 M HCl was added. The tubes
were shaken overnight at room temperature at 120 rpm and
centrifuged at 12,000 rpm for 5 min. For estimation of phytic
acid, 500 µl of the above extract was transferred to a fresh 2-
ml Eppendorf tube and the same quantity was also transferred
to a 15-ml tube for estimation of inorganic phosphorus. Equal
volumes of, viz., phytic acid dodecasodium salt from rice (Sigma)
and KH2PO4 (HiMedia) for inorganic phosphorous, were used as
quantitative standards.

For the estimation of inorganic phosphorus, 1 ml of Pi reagent
(consisting of two parts of distilled H2O, one part each of 0.02 M
ammonium molybdate, 0.57 M ascorbic acid, and 3 M sulfuric
acid) and 1 ml of distilled H2O were added to each tube. The
blue color developed after 15 to 20 min of incubation at room
temperature was measured at 820 nm. For measurement of
phytate, 1.25 ml of Wade reagent (0.3 g 5-sulfosalicylic acid,
0.03 g FeCl3·6H2O with pH adjusted to 3.05 and made up to
a final volume of 100 ml with distilled H2O) was added and
incubated for 15 min at room temperature and a pink color
developed was measured at the optical density at 490 nm. Phytate
was converted to phytate P by dividing phytate by a factor of 3.55
(Raboy and Dickinson, 1984).

Statistical Analyses
Analysis of variation (ANOVA) was calculated for individual
environments and also for combined data of four environments
(E1–E4). Descriptive statistics viz., mean, standard error of
mean (SEM), skewness, kurtosis, and coefficient variations (CV
%), were calculated. Trait-wise frequency distribution and box
plots of individual environments and combined data were
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illustrated using R software (R Core Team, 2018). Correlation
analysis was carried out in SAS (version 9.3) available at ICAR-
IIRR, Hyderabad. Best linear unbiased estimates (BLUEs) were
generated by setting random environment effects and fixed
genotype effects (Gregorio et al., 2015—META-R, Version 6.04).
The values of BLUEs were used to perform QTL analysis.
Different R packages viz., ggplot2, stability, gge, agricolae,
GGEBiplot biotools, FactoMineR, and factoextra, were used
to generate frequency distribution plots, box plots, G × E
interaction effects (GGE) biplots, additive main effects and
multiplicative interaction (AMMI) biplots, environment and
ranking of RILs, mean vs. stability and Which Won Where/What
plots, D square analysis, and PCA (Rosyara, 2014; Dumble et al.,
2017; Wright and Laffont, 2018; Yaseen et al., 2018; Mendiburu,
2020). Under AMMI, additive (main) effects were estimated
using ANOVA and G × E interaction effects (multiplicative
effects) were calculated using principal component analysis. The
AMMI model (Yan, 2001) is expressed as follows:

Yij = µ+ δi + βj +

k∑
k=1

λkβik + εij (1)

Means of RILs from each environment were used to construct
GGE biplots using the site regression linear bilinear model (Yan
and Kang, 2003), as depicted below:

Yij = µ+ βj +

k∑
k=1

λkδikβjk + εij (2)

Yij is the ith genotype/RIL in the jth environment, µ is the overall
mean, δi is the ith genotypic effect, βj is the jth environment effect,
λk is the singular value for the PC axis k, δik is the genotype/RIL
eigenvector value for the PC axis n, βjk is the environment
eigenvector value for the PC axis k, and εij is the residual error
assumed to be normally and independently distributed.

Stepwise regression analysis was carried out in SAS (Version
9.3) available at ICAR-Indian Institute of Rice Research,
Hyderabad. The regression model in terms of matrix notation is
expressed as follows:

Y = Xβ+ e (3)

Y is the variable; X is the vector of exogenous variables, β is the
regression coefficient vector, and e is the residual term assumed
to be normally distributed with e ∼ N(0, σ 2).

The D2 diversity analysis was carried out using “biotools” R
package which calculates the distance between a pair of rows
using the squared generalized Mahalanobis distance equation,
which is expressed as follows:

D2
= (xi − xj)

′

−1∑
(xi − xj) (4)

Where xi and xj are the elements of the ith row and jth
column and 6 is the non-singular covariance matrix. Finally
PCA was done in “FactoMineR” and R package, which creates
the uncorrelated linear combination of new variables using
correlated original variables.

Mapping and QTL Analysis
Genomic regions associated with agronomic traits and grain Zn
and Fe content were identified using two sets of RILs, viz., a
main set of 190 RILs with a rice microsatellite (RM) or simple
sequence repeat (SSR) markers and a subset of 44 contrasting
RILs (22 lines with Zn > 24.0 ppm, 22 lines with <24.0 ppm zinc)
from the main set were subjected to GBS. Genomic DNA was
extracted from the leaf using DNAQuikTM isolation kit (BioServe,
Beltsville, MD) according to the manufacturer’s instructions,
and DNA was quantified with QUBIT dS DNA HS assay kit
(Invitrogen, United States) and on 0.8% agarose gel.

For mapping in the main set, parental polymorphism was
surveyed with 250 SSR markers2. Based on their clear resolution
on agarose gel, 102 polymorphic SSRs were used for mapping
(Supplementary Table 2). Amplification of SSRs with different
annealing temperatures was performed using PCR (Applied
Biosystems, 2720) and EmeraldAmp R© GT PCR Master Mix
(Takara) as per PCR temperature profile (Balaji et al., 2012)
(Supplementary Table 3). The amplified products were separated
on 3% agarose gel and documented using Alpha Imager 1220
(Alpha Innotech, United States).

Genomic DNA of the subset of 44 contrasting RILs along with
two parent genotypes was subjected to whole-genome sequencing
(WGS) using Illumina Nextseq 500TM. The paired reads of size
∼150 bp were aligned to Oryza sativa L. cv. Nipponbare as
reference genome using bowtie2 version 2.2.2.6 (Langmead and
Salzberg, 2012). The aligned samples and the reference genome
sequences were used for variant calling using the SAMtools
program (Li et al., 2009). SNP variants from 46 samples (44
RILs and two parents) were annotated based on rice gene model
version 7.0, using in-house pipelines (Bioserve Biotechnologies
India Private Limited, India). Only SNPs with MAF 0.05 and
>70% call rate were considered for analyses.

The linkage map of 190 RILs with 102 SSR markers and
44 RILs with 1305 high-quality SNP markers was constructed
using IciMapping v4.23 (Meng et al., 2015). The distribution of
SSR- and GBS-based SNP markers varied across chromosomes.
The number of SSR markers per chromosome ranged from 7
(chromosome 2, 10 and 11) to 12 (chromosome 6). The total
length of the linkage map is 4067.4 cM which ranged from 179.2
(chromosome 2) to 1202.1 cM (chromosome 10) with a mean of
338.95 cM. The number of SNPs per chromosome ranged from
62 (chromosomes 5) to 188 SNPs (chromosome 1). The length of
the linkage map ranged from 477.6 (chromosome 5) to 1227.58
(chromosome 2) cM (Supplementary Table 4). The linkage map
was created by using the Kosambi function (Kosambi, 1944).
QTLs were identified using BLUEs of each RIL with SSRs and
SNPs QTLs. The permutation method was used to obtain an
empirical threshold for claiming QTLs based on 1000 runs of
randomly shuffling the trait values at the 95% confidence level
using the BIP function. Epistatic interactions with the logarithm
of odds (LOD) threshold value at 5.0 were analyzed to decipher
QTL × Environment Interaction using the MET function in

2http://www.gramene.org
3http://www.isbreeding.net/software/default.aspx
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IciMapping 4.2. QTLs and were visualized using MapChart v.2.3
(Voorrips, 2002).

Comparison of Identified QTLs of the
Present Study With the Reported QTLs
The positions of the associated SSR and SNP markers identified
in the present study were compared to the genomic positions
of the markers from the reported QTLs for grain Fe and Zn to
study the co-localization. The positions of flanking markers of
genomic regions associated with QTLs were retrieved from https:
//blast.ncbi.nlm.nih.gov/Blast.cgi and analyzed for the putative
candidate genes.

Candidate Gene Analysis
The physical position of each identified QTL was determined
by the position of the flanking SSR and SNP markers. The
genes physically located within or near the marker interval
of the QTL were considered as candidate genes for analyses.
Annotation of the genes with functions related to agronomic
traits, metal transport, and homeostasis was compiled, and the
physical positions of annotated genes were determined using the
RAP DB Genome Browser4 (Sakai et al., 2013) and Q-TARO
(QTL Annotation Rice Online) database5 (Yonemaru et al.,
2010). Genes annotated as retrotransposons were excluded from
the analysis. Genes were functionally characterized into various
categories using WEGO (Ye et al., 2006). Networks of the major
QTL was created using the Knetminer program6. The molecular
functional pathways and temporal and spatial expression of
the identified candidate genes were studied using RiceXPro
version 3.07.

RESULTS

A wide and continuous variation was observed among 190
RILs for the 10 traits of the study, viz., Zn in polished rice
(ZPR), Zn in brown rice (ZBR), Fe in polished rice (IPR),
Fe in brown rice (IBR), single plant yield (SPY), 1000 grain
weight (TW), panicle length (PL), number of tillers per plant
(NT), plant height (PH), and days to 50% flowering (DFF)
within and between environments. Only for Fe in polished (IPR)
(Table 1 and Supplementary Figure 1) was there a reduction
of mean values SPY, TW, PL, NT, PH, and DFF during E2)
in comparison to E1. For grain Fe and Zn content in brown
and polished rice, reduction of mean values was observed in
E1 wet season in comparison to E2 dry season (Table 1 and
Supplementary Figure 2). A similar trend of reduction of mean
values was also observed in the subset of 44 RILs. Normal
distribution was observed for SPY, DFF, and NT in the subset
of 44 RILs selected based on the contrasting values of grain Zn,
with continuous variation shown in Supplementary Figure 3.
Fifty RILs with >28 ppm during dry season were observed.

4http://rapdb.dna.affrc.go.jp/viewer/gbrowse/irgsp1
5http://qtaro.abr.affrc.go.jp/
6http://knetminer.rothamsted.ac.uk/Oryza_sativa/
7https://ricexpro.dna.affrc.go.jp/

Significant variation was observed for most of the studied traits
(Supplementary Tables 5, 6). Six transgressive variants for grain
Zn (over the donor parent) with SPY of >20 g were obtained
in the present study (Table 2 and Supplementary Figures 3, 4).
A single environment data of 15 quality traits/parameters, phytate
phosphate, inorganic phosphate, and total phosphate are given in
Supplementary Table 7.

Correlations
Among 190 RILs with BLUE values of 10 traits, highly significant
positive correlations were observed among ZPR, ZBR, IPR, and
IBR. Low to moderate significant positive correlations were
identified between PH and PL and also between TW and SPY.
Moderate negative correlations were found between DFF with
ZBR and IBR (Supplementary Tables 8, 9). In the subset of
44 RILs, also significant positive correlations were observed
among ZPR, ZBR, IPR, and IBR along with moderate negative
correlations for DFF with ZPR, IPR, and ZBR (Supplementary
Tables 10, 11). Correlation analyses of quality parameters of
a single environment data with grain Zn and Fe showed that
IPR has a significant positive correlation with kernel length after
cooking (KLAC) (0.58) and elongation ratio (ER) (0.58). IBR also
showed a moderate positive correlation with ER (0.40) and with
alkali spreading value (ASV) (0.40). Low positive correlations
of inorganic phosphate with kernel breadth (KB) (0.47) and
negatives correlation with head rice recover (HRR) (0.55) were
also observed (Supplementary Table 12).

D Square Analysis
The dendrogram of 190 RILs with 10 traits has shown 28
clusters, among which the first cluster is the largest group
having 109 members, followed by cluster 5 and so on. Cluster
3 with seven RILs has the highest mean grain Zn (27.84 ppm)
(Supplementary Table 13 and Supplementary Figure 5). For the
subset of 44 RILs, there were 13 clusters among which cluster
one formed the largest group with 25 members followed by the
third cluster and so on. Cluster 3 with four RILs showed the
highest mean grain Zn (24.22 ppm) (Supplementary Table 14
and Supplementary Figure 5).

PCA
The PCA (principal component analysis) was performed for 190
RILs and for subset of 44 RILs. For 190 RILs, the first four PCs
were found to be most important as their eigenvalues are more
than or equal to one and together they explain around 68% of
variability. The first four PCs contributed 28%, 15%, 14%, and
10%, respectively. The first PC showed a positive association with
original variables, viz., PH, NT, TW, IBR, ZBR, IPR, and ZPR,
and a negative association with PL, DFF, and SPY. Four variables,
viz., IBR, ZBR, IPR, and ZPR, contributed 98% of variation in
the first PC. The second PC showed a positive association with
NT, DFF, IBR, IPR, and ZPR and showed a negative association
with PH, PL, NT, DFF, SPY, TW, and ZBR. The traits PH, PL,
NT, DFF, and SPY, together explained 99% of variability in the
second PC. The third PC depicted a positive association with
PH, PL, NT, DFF, IPR, and ZPR and a negative association with
SPY, TW, IBR, and ZBR. The traits PH, PL, NT, DFF, SPY, and
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TABLE 1 | Descriptive statistics of 190 RILs (E1 and E2) with BLUE.

Statistic Year PH PL NT DFF SPY TW IBR ZBR IPR ZPR

Mean E1 106.09 26.71 13 102 25.53 23.93 7.31 17.27 1.68 13.1

PR116 82.8 22.27 13 101 33.2 24.71 5.9 11.8 1.3 9.1

R. Basmati 135.8 27.33 10.8 91 19.5 21.88 9.7 20.2 1.4 16.9

E2 102.64 23.97 10 98 20.27 22.97 11.27 24.14 3.2 20.36

PR116 80.6 22 12.4 94 26.53 25.15 9.5 19.2 2.8 12.5

R. Basmati 125.6 26 10 85 18.14 19.07 13 27.1 9.4 22.4

BLUEs 104.8 25.3 11.3 100.0 22.9 23.5 9.3 20.7 2.4 16.8

PR116_BLUE 82.67 22.14 11.97 97.5 30.04 24.96 8.2 15.8 2.37 11.08

R. Basmati_BLUE 130.03 26.51 10.73 88 19.22 21.43 11.1 23.45 5.32 19.38

PCV E1 16.26 10.13 17.16 7.61 20.79 14.91 21.85 17.80 61.89 24.11

E2 17.61 9.23 12.05 8.87 15.07 13.79 24.76 25.46 55.27 29.14

GCV E1 16.06 5.56 9.70 3.15 19.44 12.48 19.22 16.93 46.16 22.98

E2 17.46 6.61 9.23 2.10 13.13 13.31 22.79 23.26 39.97 27.24

Heritability E1 0.98 0.30 0.32 −0.17 0.87 0.70 0.77 0.90 0.56 0.91

E2 0.98 0.51 0.59 −0.06 0.76 0.93 0.85 0.83 0.52 0.87

SEM E1 2.56 0.33 0.26 0.57 0.71 0.45 0.24 0.57 0.13 0.57

E2 2.43 0.27 0.15 0.71 0.46 0.45 0.44 1.06 0.28 1.04

BLUEs 1.3 0.1 0.1 0.3 0.3 0.2 0.1 0.3 0.1 0.2

Skewness E1 0.69 −0.48 1.11 −0.08 0.34 0.54 0.81 0.48 0.36 0.4

E2 0.43 1.02 0.25 0.12 1.37 0.47 −0.59 −0.15 1.25 0.11

BLUEs 0.2 0.3 0.4 0.4 0.4 0.7 −0.2 −0.1 0.6 0.1

Kurtosis E1 0.53 −0.49 1.46 1.09 −0.65 0.85 0.37 −0.36 −0.05 −0.62

E2 −0.44 4.42 0.56 0.54 1.56 0.67 −0.57 −1.1 1.38 −0.79

BLUEs −0.3 0.8 1.2 2.0 −0.3 1.2 0.1 0.0 0.1 0.2

Min and max E1 62.07 19.19 8 91 12.83 17.49 4.7 11.1 0.19 6.2

158.9 30.7 18 114 33.07 34.43 15.8 27.33 6.2 23.8

E2 59.52 19.57 7 84 13.83 15.56 4.9 10.4 0.8 7.6

151.13 31.33 14 116 29.64 33.43 16.5 38.2 9.3 35.1

BLUEs 60.6 21.2 8.2 88.0 14.9 16.8 4.8 11.3 0.8 7.6

150.8 31.0 15.3 115.0 32.4 33.9 13.9 29.7 5.3 27.2

CV (%) E1 16.74 8.41 13.98 3.88 19.53 12.77 22.01 22.15 53.13 28.82

E2 16.73 7.86 10.55 5.07 15.6 13.36 27.06 30.05 54.87 34.47

BLUEs 2.5 0.2 0.2 0.6 0.5 0.4 0.2 0.5 0.1 0.5

E1, environment 1; E2, environment 2; BLUE, best linear unbiased estimates; PCV, phenotypic coefficient of variation; GCV, genotypic coefficient of variation; SEM,
standard error of the mean; min and max, minimum and maximum; CV (%), confidence level percentage; ZPR, zinc content in polished rice (ppm); ZBR, zinc content in
brown rice (ppm); IPR, iron content in polished rice (ppm); IBR, iron content in brown rice (ppm); SPY, single plant yield (g); TW, test weight (g); PH, plant height (cm); PL,
panicle length (cm); NT, number of tillers per plant; DFF, days to fifty percent flowering (days).

TW contributed a maximum variation around 95% in the third
PC. The 4th PC showed a smaller positive association with IBR,
IPR, and ZPR and has a negative association with the rest of the
traits. The traits NT and SPY contributed a maximum variation
around 94% in the fourth PC (Supplementary Tables 15, 16 and
Supplementary Figure 6).

According to the PCA of 44 subset RILs, the first four PCs
with eigenvalues of more than or equal to one explained around
73% of variation. Individually, the first four PCs contributed
36%, 15%, 12%, and 10% of variations, respectively. The first PC
showed a positive association with PH, PL, NT, IBR, ZBR, IPR,
and ZPR and showed a negative association with DFF, SPY, and
TW. The traits IBR, ZBR, IPR, and ZPR together contributed 87%
of variability in the first PC. The second PC has shown a positive
association with NT, SPY, TW, IBR, ZBR, and ZPR and showed
a negative association with PH, PL, DFF, and IPR. The traits PH,

PL, NT, DFF, SPY, and TW contributed 93% of variation in the
second PC. The third PC showed a positive association with PL,
NT, SPY, and IPR and showed a negative association with PH,
DFF, TW, IBR, ZBR, and ZPR. The traits NT, DFF, SPY, and TW
together contributed 93% of variation in the third PC. The fourth
PC has shown a positive association with PH, PL, NT, DFF, IPR,
and ZPR and a negative association with SPY, TW, IBR, and ZBR.
The traits PH, PL, NT, DFF, and SPY together contributed around
90% of variation in the fourth PC (Supplementary Tables 17, 18
and Supplementary Figure 6).

Stepwise Regression Analysis of 190
RILs for Grain Zn and Fe and Yield
The stepwise regression analysis was carried out to identify the
factors influencing ZPR, ZBR, IPR, and IBR content in this
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TABLE 2 | Descriptive statistics of 44 RILs (E1, E2, E3, and E4) with BLUE.

Statistic Year PH PL NT DFF SPY TW IBR ZBR IPR ZPR

Mean E1 105.95 26.79 12.76 101.9 25.07 23.93 7.41 17.65 1.68 13.52

PR116 84.5 22.04 11.2 101 34.8 24.66 5.9 12.4 1.33 9.67

R. Basmati 135 27.66 10.73 91 21.4 23.63 9.7 19.8 1.37 16.37

E2 100.6 23.89 9.99 97.6 20.35 23.03 11.24 24.25 3.52 20.59

PR116 80.83 22.23 12.73 94 25.28 25.25 10.5 19.2 3.4 12.5

R. Basmati 125.07 25.37 10.73 85 17.04 19.23 12.5 27.1 9.27 22.4

E3 110.32 26.05 10.87 102.67 26.35 23.81 9.79 16.58 2.54 12.79

PR116 83.5 23.3 12 103.67 33.1 24.5 8 10.47 2.3 8.93

R. Basmati 137.15 28.79 11.67 98.67 20.13 22.19 10.2 20.37 7.33 16.63

E4 105.4 23.62 10.03 99.91 24.13 22.63 10.27 18.19 3 14.97

PR116 81.3 21.5 10 92 23.53 24.05 11.43 16.17 1.47 16.4

R. Basmati 121.7 25.3 8 89 15.32 20.13 13.07 26 8.13 21.63

PR116_BLUE 82.53 22.27 11.98 98.75 29.18 24.62 8.96 14.56 2.13 11.88

R. Basmati_BLUE 129.73 26.78 11.04 90.92 18.47 21.29 11.37 23.32 6.53 19.26

BLUE 105.5 25.1 11.2 100.8 24.0 23.4 9.6 19.1 2.6 15.4

SEM E1 2.56 0.33 0.26 0.57 0.71 0.45 0.24 0.57 0.13 0.57

E2 2.43 0.27 0.15 0.71 0.46 0.45 0.44 1.06 0.28 1.04

E3 2.53 0.44 0.19 0.9 0.76 0.38 0.27 0.49 0.21 0.49

E4 2.05 0.48 0.21 0.96 0.58 0.33 0.32 0.5 0.25 0.53

SEM_BLUE 2.2 0.2 0.1 0.6 0.5 0.4 0.3 0.5 0.1 0.5

Skewness E1 0.69 −0.48 1.11 −0.08 0.34 0.54 0.81 0.48 0.36 0.4

E2 0.43 1.02 0.25 0.12 1.37 0.47 −0.59 −0.15 1.25 0.11

E3 0.64 −0.27 −0.03 0.4 0.52 −0.02 0.32 0.19 2.07 0.33

E4 0.02 0.33 0.59 0.34 −0.03 0.45 −0.1 −0.17 3.17 −0.08

Skewness_BLUE 0.5 0.5 0.4 0.0 0.7 0.3 −0.1 0.0 1.6 0.1

Kurtosis E1 0.53 −0.49 1.46 1.09 −0.65 0.85 0.37 −0.36 −0.05 −0.62

E2 −0.44 4.42 0.56 0.54 1.56 0.67 −0.57 −1.1 1.38 −0.79

E3 0.57 −0.77 −0.4 −0.21 −0.7 0.16 −0.38 0.03 4.71 −0.12

E4 −0.67 −0.43 −0.66 −0.76 −0.87 0.32 −0.15 0.55 12.83 −0.13

Kurtosis_BLUE 0.2 0.1 1.2 0.1 0.1 1.0 −0.7 −0.9 4.9 −1.1

Min and max E1 69.27 21.99 9.6 91 16.38 17.64 4.7 11.4 0.03 7.4

158.9 30.7 18.3 113 33.87 32.02 11.8 27.33 3.87 23.2

E2 65.7 19.63 7.73 85 15.91 15.78 5.2 10.4 1 7.6

139.5 31.33 12.73 109 29.41 31.61 16.5 38.2 9.27 34.8

E3 80.2 20.32 8.33 91.33 18.3 17.1 6.27 9.7 0.97 6.53

163.1 32.16 14 118.33 37.19 30.32 14.3 24.37 7.5 20.47

E4 72.9 16.3 8 89 15.32 17.12 5.3 9.33 1.4 6.37

130.4 30.63 13 113.33 30.61 28.73 15.27 26 11.37 22.33

Min_BLUE 73.6 22.3 9.1 90.9 18.5 17.2 6.2 12.3 1.2 8.9

Max_BLUE 147.8 29.4 13.9 110.6 31.4 30.0 12.8 26.9 6.5 23.4

CV (%) E1 16.74 8.41 13.98 3.88 19.53 12.77 22.01 22.15 53.13 28.82

E2 16.73 7.86 10.55 5.07 15.6 13.36 27.06 30.05 54.87 34.47

E3 15.87 11.6 12.13 6.09 19.77 11.06 19.08 20.35 56.01 26.19

E4 13.46 14.05 14.38 6.66 16.53 10.13 21.63 18.9 57.36 24.07

CV (%)_BLUE 4.5 0.5 0.3 1.2 1.0 0.7 0.5 1.1 0.3 1.1

E1, environment 1; E2, environment 2; E3, environment 3; E4, environment 4; BLUE, best linear unbiased estimates; PCV, phenotypic coefficient of variation; GCV,
genotypic coefficient of variation; SEM, standard error of the mean; min and max, minimum and maximum; CV (%), confidence level percentage; ZPR, zinc content in
polished rice (ppm); ZBR, zinc content in brown rice (ppm); IPR, iron content in polished rice (ppm); IBR, iron content in brown rice (ppm); SPY, single plant yield (g); TW,
test weight (g); PH, plant height (cm); PL, panicle length (cm); NT, number of tillers per plant; DFF, days to fifty percent flowering (days).

study, and all the 10 variables were used in regression analysis.
Stepwise regression analysis for ZPR was carried out over the
remaining nine independent variables, and the model retained

only two significant variables, namely, ZBR (77%) and IPR (2%),
which explained 79% variation in the model, and the rest of
the variations may be explained by the variables which were not
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considered in this study. The stepwise regression Eq. (5) for the
ZPR model is expressed as follows;

ZP̂R190 = −0.75+ 0.77ZBR+ 0.65IPR (5)

The regression coefficients depicts that, for every 1 ppm increase
in ZBR, there was a 0.77-ppm increase in ZPR and for every ppm
unit increase IPR, there will be a 0.65-ppm increase in ZPR.

The ZBR 190 stepwise regression model retains three
variables, viz., ZPR (77%), IPR (0.5%), and IBR (5%), and
together they contributed 82% of R2. The regression equation for
ZBR 190 is expressed in Eq. (6):

ZB̂R190 = 3.09+ 0.63IBR− 0.29IPR+ 0.74ZPR (6)

As per the regression coefficients, for every 1 ppm of ZPR
increase, there was an increase of 0.74 ppm of ZBR and
for every 1 ppm of IBR increase, there was an increase of
0.63 ppm of ZBR, but for every 1 ppm increase of IPR, ZBR was
decreased by 0.29 ppm.

The IPR 190 regression model was influenced by TW (3%),
IBR (4%), ZBR (1%), and ZPR (29%); altogether, they explained
37% of variation in the model and the remaining variations may
be explained by other factors which were not included in the
present study. Regression Eq. (7) for IPR is expressed as:

IP̂R190 = 0.86− 0.05TW + 0.18IBR− 0.06ZBR+ 0.13ZPR
(7)

IBR and ZPR have a positive effect on the status of IPR; for every
1 ppm of IBR and ZPR increase, there was an increase in IPR
of 0.18 ppm with IBR and 0.13 ppm with ZPR, and ZBR has
a negative influence on IPR with every 1 g of TW and 1 ppm
of ZBR increase; IPR was decreased by 0.05 ppm with TW and
0.06 ppm with ZBR.

The stepwise regression model for IBR (Eq. 8) depicts that IBR
was influenced by TW (1%), ZBR (54%), and IPR (3%).

IB̂R190 = 0.64+ 0.06TW + 0.30ZBR+ 0.44IPR (8)

Regression coefficients of the IBR 190 model predict that for a 1-g
increase of TW, a 0.06-ppm increase of IBR was noted. Similarly,
with a 1-ppm increase of ZBR and IPR, 0.30 ppm and 0.44 ppm
of IBR increase were observed.

In the SPY 190 model (Eq. 9), mainly two variables, viz., PH
(1%) and TW (4%), were entered in the model, and it clearly
showed that other large amounts of variation may be explained
by other factors which were not included in this study.

SP̂Y190 = 14.50+ 0.02PH + 0.25TW (9)

For every 1 cm of PH and 1 g of TW increase, SPY increased by
0.02 g with PH and 0.25 g with TW.

Stepwise Regression Analysis for 44
RILs for Grain Zn and Fe and Yield
The four environments’ phenotype data of 10 traits of the
subset of 44 contrasting RILs (22 lines with Zn > 24.0 ppm,
22 lines with <24.0 ppm zinc) was also analyzed for regression

(Supplementary Table 19). For the subset, ZPR was found to be
influenced by SPY (1%) and ZBR (93%). Regression Eq. (10) for
ZPR is expressed as follows:

ZP̂R44 = −5.39+ 0.08SPY + 0.99ZBR (10)

Regression coefficients explained that for every 1-ppm increase
in ZBR, there was an increase by 0.99 ppm of ZPR. SPY showed
a positive effect on ZPR with an increase of 1 g of SPY, and there
was an increase by 0.08 ppm of ZPR.

The ZBR was influenced by PL (0.5%), SPY (1%), TW (0.5%),
IBR (1%), and ZPR (93%). Regression Eq. (11) for ZBR is
expressed as:

ZB̂R44 = 12.63− 0.17PL− 0.11SPY − 0.09TW+

0.271BR+ 0.83ZPR (11)

Regression coefficients in the ZBR 44 model depicted that for
every 1-ppm increase of IBR and ZPR, there was an increase
by 0.27 ppm of ZBR with IBR and 0.83 ppm of ZBR with ZPR.
PL, SPY, and TW showed a negative impact on ZBR, with for
every 1-cm increase of PL; 1 g of SPY and TW increased, and
ZBR decreased by 0.17 ppm with PL, 0.11 ppm with SPY, and
0.09 ppm with TW.

The IPR was influenced by PL (4%), DFF (6%), TW (7%), and
ZPR (37%). Regression Eq. (12) for IPR was:

IP̂R44 = 6.74+ 0.17PL− 0.09DFF − 0.08TW + 0.15ZPR
(12)

PL and ZPR have a positive effect on IPR; for every 1-cm increase
of PL and 1-ppm increase of ZPR, IPR increased by 0.17 ppm
with PL and 0.15 ppm with ZPR. DFF and TW showed a negative
effect on IPR, with every 1-day increase of DFF and 1-g increase
of TW; there was a decrease of IPR by 0.09 ppm with DFF and
0.08 ppm with TW.

The IBR was influenced by ZPR (72%) as the only variable that
entered in the IBR stepwise regression model (Eq. 13):

IB̂R44 = 3.59+ 0.39ZPR (13)

ZPR has a positive effect on IBR, and for every 1-ppm increase of
ZPR, IBR increased by 0.39 ppm.

In the subset of 44 RILs, SPY was influenced only by two
factors, viz., ZBR (5%) and ZPR (7%). Regression Eq. (14) for SPY
is expressed as:

SP̂Y44 = 30.85− 1.08ZBR+ 0.90ZPR (14)

ZBR has a negative effect and ZPR a positive effect on SPY; every
1-ppm increase of ZBR, SPY decreased by 1.08 ppm, and every
1-ppm increase of SPY, ZPR increased by 0.90 ppm.

Stability of 44 RILs Across the
Environments
Combined ANOVA of 44 RILs across four environments
indicated significant variance for RILs as well as for
genotype× environment effect for the traits of study.
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Zinc Content in Polished Rice (ZPR)
For ZPR, 8.06% genotypic effect, 89.37% environment effect,
and 1.90% genotype × environment effect was observed.
According to AMMI analysis, PC1 contributed 68.3% variability,
PC2 contributed 23.6% variability, and PC3 contributed 8.1%
variability (Table 3). The AMMI biplot showed 91.9% of
goodness of fit with 68.3% of PC1 and 23.6% of PC2 contribution
from IPCA (interaction principal components axes) 1 and 2,
respectively, and with the highest mean values, E2 was found to
be a favorable season. G15 was closer to the origin and relatively
stable RILs, and G42 farther from the IPCA line was found to be
the specific adapter across the seasons. G32 was found to be the
best in E3 and E4, whereas G7 in E1 and G39 were found the best
in E1 and E2 and G13 was found the best in E1, E2, and E3. Based
on the mean vs. stability, G15 and G13 were more stable. As per
the Which Won Where/What graph, G17 won in E1, G32 and G2
in E4, and G32 in E3 and E4 (Figure 1).

Zinc Content in Brown Rice (ZBR)
A total 8.10% of genotypic effect, 89.53% of environment effect,
and 2.07% of genotype × environment effect were observed for
ZBR. PC1 contributed 69.5% variability, PC2 contributed 20.4%
variability, and PC3 contributed 10.1% variability to the AMMI
biplot with 89.9% of goodness of fit and 69.5% of PC1 and 20.4%
PC2 contribution from IPCA (Table 3). E2 was found to be a
favorable season with the highest mean values of RILs. G11 was
closer to the origin, and thus relatively stable RIL and G6 were

farther from the IPCA line and were found to be specific adapters.
G2 was in E4; G7, G18, and G42 were in E1 and E2; G38 was in
E2 and E3; and G32 was found in E3 and E4, whereas G17 was
found to be the best in E1. Based on the mean vs. stability, G11
was found as stable. According to the Which Won Where/What
graph, G17 won in E1, and RILs G2 and G32 won in E3 and E4.
E3 was found as the representative environment as it falls on the
Mean–Environment Axis (Supplementary Figure 7).

Iron Content in Polished Rice (IPR)
For IPR, the genotypic effect was 15.04%, the environment effect
was 79.11%, and the genotype × environment effect was 3.49%.
AMMI analysis has shown PC1 with 49.0% variability, PC2 with
37.5% variability, and PC3 with 13.4% variability (Table 3). The
AMMI biplot showed 86.5% of goodness of fit with 49.0% PC1
and 37.5% PC2 contribution from IPCA. E4 has the highest mean
value. G15 was found near the origin, and G3 was found to be the
best in E1 and E3, whereas G2 and G48 were found to be the best
in E4. E4 was found as the representative environment as it falls
on the Mean–Environment Axis. Based on the mean vs. stability,
G15 was observed to be a stable RIL. With reference to the Which
Won Where/What graph, G39 won in E1, G3 won in E1 and E3,
and G2 and G48 won in E4 (Supplementary Figure 8).

Iron Content in Brown Rice (IBR)
A total of genotypic effect of 7.81%, environment effect of
89.50%, and genotype × environment effect of 2.02% were
observed. For AMMI analysis, PC1 contributed 44.5% variability,

TABLE 3 | AMMI analysis of variance for the yield and mineral micronutrients traits in the subset of 44 RILs.

Traits SV ENV REP (ENV) GEN ENV:GEN Residuals Total PC1 PC2 PC3

df 3 8 47 141 376 575 49 47 45

ZPR SS 1750.15*** 9.41* 157.77*** 37.26*** 3.8 1958.39 3590.59*** 1238.08*** 424.99***

VE (%) 89.37 0.48 8.06 1.9 0.19 100 68.3 23.6 8.1

IPR SS 87.14*** 1.44 16.56*** 3.84*** 1.16 110.16 265.71*** 203.36*** 72.82

VE (%) 79.11 1.31 15.04 3.49 1.06 100 49 37.5 13.4

IBR SS 388.53*** 0.81 33.91*** 8.76*** 2.09 434.1 549.7*** 474.86*** 210.35***

VE (%) 89.5 0.19 7.81 2.02 0.48 100 44.5 38.5 17

ZBR SS 1717.85*** 2.75 155.49*** 39.77*** 2.96 1918.82 3896.3*** 1142.78*** 567.9***

VE (%) 89.53 0.14 8.1 2.07 0.15 100 69.5 20.4 10.1

SPY SS 977.24*** 14.68* 129.87*** 35.6*** 6.1 1163.49 3155.91*** 1014.82*** 849.3***

VE (%) 83.99 1.26 11.16 3.06 0.52 100 62.9 20.2 16.9

TW SS 54.06 15.25** 71.77*** 6.57* 4.83 152.5 462.19*** 265.31 199.37

VE (%) 35.45 10 47.06 4.31 3.17 100 49.9 28.6 21.5

PH SS 2275.48*** 30.56** 2958.53*** 119.49*** 11.57 5395.63 11926.16*** 3654.97*** 1266.47***

VE (%) 42.17 0.57 54.83 2.21 0.21 100 70.8 21.7 7.5

PL SS 355.66** 32.83*** 29.27*** 19*** 7.52 444.28 1735.62*** 563.27* 380.38

VE (%) 80.05 7.39 6.59 4.28 1.69 100 64.8 21 14.2

NT SS 241.55** 23.34*** 8.58** 5.25 5.13 283.86 314.68 293.08 132.34

VE (%) 85.1 8.22 3.03 1.85 1.81 100 42.5 39.6 17.9

DFF SS 738.95** 76.16 204.38** 55.43** 39.74 1114.66 4736.03*** 2243.17 836.27

VE (%) 66.29 6.83 18.34 4.97 3.57 100 60.6 28.7 10.7

***Significant at P < 0.0001. **Significant at P < 0.01. *Significant at P < 0.05; SV, source of variation; PC, principal component; ENV, environment; GEN, genotype; ZPR,
zinc content in polished rice (ppm); ZBR, zinc content in brown rice (ppm); IPR, iron content in polished rice (ppm); IBR, iron content in brown rice (ppm); SPY, single plant
yield (g); TW, test weight (g); PH, plant height (cm); PL, panicle length (cm); NT, number of tillers per plant; DFF, days to fifty percent flowering (days).
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FIGURE 1 | AMMI and GGE biplot for ZPR across four environments: AMMI biplot, GGE biplot, mean vs. stability and Which Won Where/What.

PC2 contributed 38.5% variability, and PC3 contributed 17%
variability (Table 3). The AMMI biplot showed 83.0% of
goodness of fit with 44.5% of PC1 and 38.5% of PC2 contribution
from IPCA 1 and 2, respectively. G42 RIL was closer to the origin
and was considered as a relatively stable RIL, and G7 and G11
farther from the IPCA line were found to be the specific adapters.
All four seasons showed almost equal discrimination power,
whereas E2 was identified as the representative environment, as
it falls on the Mean–Environment Axis. G42 and G46 were found
near the origin and were considered as stable RILs. G32 was
identified to be the best in E2 and E4; G18 RIL was found to be
the best in E1 and G7 performed best in E2. Based on the mean
vs. stability, G42 was found to be more stable. With reference to
the Which Won Where/What graph, G18 and G3 won in E1, and
G32 won in E2 and E4 (Supplementary Figure 9).

Single Plant Yield (SPY)
For SPY, the genotypic effect was 11.16%, the environment effect
was 83.99%, and the genotype × environment effect was 3.06%.
AMMI analysis has shown 62.9% of PC1, 20.2% of PC2, and
16.9% of PC3 contribution to variability. The AMMI biplot

showed 83.1% of goodness of fit with 62.9% of PC1 and 20.2%
of PC2 contribution from IPCA 1 and 2, respectively (Table 3).
The highest mean values were observed for most of the RILs in
E2. The four seasons showed almost equal discrimination power.
G16, G29, and G11 were found near the origin and hence were
considered as less interactive RIL and thus considered to be less
interactive and relatively stable. G6 performed best in E2 and E4;
G4 performed best in E2; G3 and G19 performed best in E1 and
E2; G1 performed best in E3; and G47 performed best in E1.
Based on the mean vs. stability, G29 was considered to be more
stable RIL. According to the Which Won Where/What graph),
G6 won in E2 and E4, and G3 won in E1 and E2 (Figure 2).

Test Weight (TW)
A total of 47.16% genotypic effect, 35.45% environment effect,
and 4.31% genotype × environment effect were observed. The
AMMI biplot has shown 78.5% of goodness of fit with 49.9% of
PC1 and 28.6% of PC2 contribution from IPCA (Table 3). AMMI
analysis presented PC1 with 49.9% contribution, PC2 with
28.6% contribution, and PC3 with 21.5% contribution toward
variability. All seasons showed almost equal discrimination
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FIGURE 2 | AMMI and GGE biplot for SPY across four environments: AMMI biplot, GGE biplot, Which Won Where/What and mean vs. stability.

power, and the highest mean values were observed for most of
the RILs during E1. G28 RIL was closer to the origin and hence
considered as a relatively stable RIL, and G14 farther from the
IPCA line was found to be the specific adapter. G26 was found
near the origin and found to be the lesser interactive RIL. G46
and G22 were found to be the best in E1 and E2; G6 and G41 were
found to be the best in E3 and E4; and G19 RIL was found to be
the best in E1 and E3. Based on the mean vs. stability G28 was
found as stable RIL), according to the Which Won Where/What
graph, G22 won in E1 and E2, G19 won in E1, E3, and E4; and G6
and G41 won in E3 and E4 (Supplementary Figure 10).

Plant Height (PH)
For plant height, across all the environments, the genotypic
effect was 54.83%, the environment effect was 42.17%, and the
genotype × environment (G × E) effect was 2.21%. AMMI
analysis has shown PC1 contributing 70.8%, PC2 contributing
21.7%, and PC3 contributing 7.5% toward variability (Table 3).
The AMMI biplot showed 92.5% of goodness of fit with 70.8%
of PC1 and 21.7% of PC2 contribution from IPCA. The highest
mean values were observed in E2. All the seasons showed almost
equal discrimination power. G25 was found near the origin and
was considered to be the less interactive RIL. G14 and G29 farther

from the IPCA line were found to be the specific adapters. G9 was
found to be the best in E2, G16 was found to be the best in E3, and
G2 was found to be the best in E1 and E3. Based on the mean vs.
stability, G9 and G14 were found more stable among the seasons.
From the Which Won Where/What graph, G16 won in E3, and
G10 and G18 won in E4 (Supplementary Figure 11).

Panicle Length (PL)
For PL, the genotypic effect was 6.59%, the environment effect
80.05%, and the genotype × environment effect 4.28%. AMMI
analysis has shown PC1 contribution of 64.8%, PC2 contribution
of 21.0%, and PC3 contribution of 14.2% to variability. The
AMMI biplot has also shown 85.8% of PC1 and 21.0% of PC2
goodness of fit with 64.8% contribution from IPCA (Table 3). E3
has the highest mean values, and thus found to be favorable for
expression in most of the RILs. All seasons showed almost equal
discrimination power. G3 was found near the origin and hence
considered as less interactive RIL. G18 was found to be the best
in E4; G34 was found to be the best in E1; G30 was found to be the
best in E3; and G16 was found to be the best in E1 and E2. Based
on the mean vs. stability, G15 RIL was found to be more stable
among the seasons. According to the Which Won Where/What
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graph, G30 won in E3, G34 won in E1, G18 won in E4, and G16
won in E1 and E2 (Supplementary Figure 12).

Number of Tillers per Plant (NT)
A total of 3.03% genotypic effect, 85.10% of environment effect,
and 1.85% genotype × environment effect were observed. The
AMMI biplot showed 82.1% of goodness of fit with almost 42.5%
of PC1 and 39.6% of PC2 contribution from the IPCA line.
The AMMI analysis has shown 42.5% contribution from PC1,
39.6% contribution from PC2, and 17.9% contribution from PC3
toward variability (Table 3). E1 found to be a more favorable
season for the expression of trait with the highest mean values.
Four seasons showed almost equal discrimination power, whereas
E2 was found as the representative environment, as it falls on the
Mean–Environment Axis. G17 was closer to the IPCA origin and
hence considered to be a relatively stable RIL across seasons. G15
was found near the origin and noted as the less interactive RIL.
G11 was found to be the best in E1 and E2, whereas G8 was found
to be the best in E1 and E3. Based on the mean vs. stability, G17
was found to be more stable. As per Which Won Where/What,
G8 won in E1 and E3, G11 won in E1 and E2, and G14 won in E4
(Supplementary Figure 13).

Days to Fifty Percent Flowering (DFF)
For DFF, 18.34% of genotypic effect, 66.29% of environment
effect, and 4.97% of genotype × environment effect were
observed. PC1 contributed 60.6% variability, PC2 contributed
28.7% variability, and PC3 contributed 10.7% variability as noted
from the AMMI analysis (Table 3). The AMMI biplot showed

89.3% of PC1 and 28.7% of PC2 goodness of fit with 60.6%
contribution from the IPCA line. With the highest mean values,
E2 was found to be a favorable season. All four environments
showed almost equal discrimination power. G46 was found near
and closer to the origin and found to be stable. G18 farther from
the IPCA line was found to be a specific adapter. G15 was found
to be the best in E1 and E2, G21 was found to be the best in
E1 and E3, and G26 was found to be the best in E2 and E4.
According to the mean vs. stability graphs, G46 was found to be
more stable RIL across the seasons. According to the Which Won
Where/What graph, G21 won in E1 and E3, G15 won in E1 and
E2, and G35 won in E4 (Supplementary Figure 14).

Identification of QTL
SSR Based
Out of 102 polymorphic SSRs, per chromosome the number
ranged from 7 (chromosome 10 and 11) to 12 (chromosome 6).
A linkage map of 4067.4 cM was constructed with the size of each
chromosome ranging from 179.2 to 1202.1 cM with a mean of
338.95 cM (Table 4 and Figure 3). A total of 13 QTLs detected
in 190 RILs with two seasons of BLUEs including advantage over
check values (AOC). Out of 13 QTLs, nine QTLs were from the
donor parent (Ranbir Basmati) and only two QTLs for SPY and
DFF were from the recipient parent (PR116). Four QTLs for ZPR,
IBR, SPY, and PH overlapped with QTLs for AOC of the same
traits. Only one QTL with a moderate effect was observed for
ZPR (qZPR.2.1: PV 11.3%) and IBR (qIBR.5.1: PV 10.1%) on
chromosomes 2 and 5. The remaining QTLs were identified to
be with low PV % (Table 4).

TABLE 4 | Identification of SSR based QTL in 190 RILs with BLUE and AOC_BLUE.

S. no. Trait QTL Chr Position
(cM)

Marker interval LOD PV (%) Add Allele Region reported

1 ZPR qZPR.2.1 2 123 RM1367–RM262 5.25 11.3 −0.56 Parent 2 Raza et al. (2019)

2 AOC_ZPR qAOC_ZPR.9.1 9 92 RM160–RM23669 2.65 6.23 −5.27 Parent 2 Raza et al. (2019);
Jeong et al. (2019);
Calayugan et al. (2020)

3 AOC_IPR qAOC_IPR.9.1 9 140 RM6543–RM296 3.26 7.52 −11.46 Parent 2 Kumar et al. (2019);
Raza et al. (2019)

4 IBR qIBR.1.1 1 151 RM11741–RM11740 2.8 6.48 −0.44 Parent 2 Swamy et al. (2018b);
Dixit et al. (2019);
Jeong et al. (2019)

5 AOC_IBR qAOC_IBR.1.1 1 152 RM11741–RM11740 2.67 6.26 −3.87 Parent 2 Swamy et al. (2018b);
Dixit et al. (2019);
Jeong et al. (2019)

6 IBR qIBR.5.1 5 175 RM18904–RM18799 3.66 10.11 −0.74 Parent 2 Kumar et al. (2019)

7 AOC_IBR qAOC_IBR.5.1 5 175 RM18904–RM18799 4.41 11.74 −7.1 Parent 2 Kumar et al. (2019)

8 SPY qSPY.7.1 7 22 RM7601–RM21097 3.24 1.39 0.99 Parent 1

9 AOC_SPY qAOC_SPY.7.1 7 22 RM7601–RM21097 3.17 7.4 3.19 Parent 1

10 SPY qSPY.12.1 12 236 RM28607–RM235 2.58 9.02 2.5 Parent 1 Kumar et al. (2019)

11 PH qPH.1.1 1 146 RM11743–RM11741 3.33 7.66 −5.31 Parent 2 Dixit et al. (2019)

12 AOC_PH qAOC_PH.1.1 1 146 RM11743–RM11741 3.33 7.67 −6.44 Parent 2 Dixit et al. (2019)

13 DFF qDFF.7.1 7 187 RM21539–RM20844 2.78 7.7 1 Parent 1 Calayugan et al. (2020)

Chr, chromosome; QTL, quantitative trait loci; cM, centimorgans; PV, phenotypic variance explained; LOD, logarithm of the odds; Add, additive effect; AOC, advanced
over check; ZPR, zinc content in polished rice (ppm); IPR, iron content in polished rice (ppm); IBR, iron content in brown rice (ppm); SPY, single plant yield (g); PH, plant
height (cm); DFF, days to fifty percent flowering (days); Parent 1–Recipient parent (PR116); Parent 2–Donor parent (Ranbir Basmati)
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FIGURE 3 | QTL identified with SSRs and SSR_AOC (red), SNPs and SNP_AOC (green) in RIL of PR116/Ranbir Basmati using IciMapping v4.2. AOC, advanced
over check; ZPR, zinc content in polished rice (ppm); ZBR, zinc content in brown rice (ppm); IPR, iron content in polished rice (ppm); IBR, iron content in brown rice
(ppm); SPY, single plant yield (g); TW, test weight (g); PH, plant height (cm); NT, number of tillers per plant.
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Epistatic Interaction Analysis
Out of 75 epistatic interactions identified, only one interaction
for ZPR (PV 11.3%) between chromosomes 1 and 4 was
observed (Figure 4). For IBR, two digenic interactions between
chromosomes 2 (PV > 12.7%) and 8 and chromosomes 7 and 8
(PV > 18.9%) were found. All the remaining interactions found
to be with low PV% (<10%) (Supplementary Table 20).

GBS Based
A total of 19,626 SNPs were obtained with a maximum
number of SNPs (11.82%) in chromosome 1 (2319) and
a minimum number of SNPs (5.75%) in chromosome 10
(1129). Out of 19626, 5206 polymorphic SNPs between
the parents were considered after removal of monomorphic
SNPs. The linkage map was constructed with 1035 SNPs.
A maximum number of polymorphic SNPs (13.22%) were
found in chromosome 1 (688), and a minimum number of
polymorphic SNPs (5.42%) were observed in chromosome 12
(542) (Supplementary Table 4). Genetic maps were constructed
from linkage data of RIL population, and QTLs (≥2.5 LOD)
were identified using composite interval mapping (CIM)
with graphical output using IciM4.2 software (Jansen, 1994;
Zeng, 1994).

Thirty SNP QTLs were identified for eight traits with PV
ranging from 5 to 37.84% identified based on BLUEs derived
from four seasons (Table 5 and Figure 3). A major SNP-QTL
for ZPR as qZPR.1.1 (PV 37.84%) on chromosome 1 and a
moderate QTL as qZPR.11.1 (PV 15.47%) on chromosome 11
were identified. Another major SNP-QTL was also detected for
ZBR as qZBR.1.1 (PV 30.61%) on chromosome 1 along with
a moderate QTL as qZBR.2.1 (PV 19.84%) on chromosome
2. Three SNP-QTLs, viz., qIPR.3.1 (PV 34.75%), qIPR.6.1
(PV 15.29%), and qIPR.7.1 (PV 12.66%), were found on
chromosomes 3, 6, and 7 with two additional QTLs for AOC
as qIPR.7.1 (PV 15.62%) on chromosome 7 and qIPR.11.1
(PV 31.65%) on chromosome 7. For IBR, a major QTL
qIBR.5.1 (PV 33.02%) on chromosome 5 and a moderate
QTL qAOC_IBR.7.1 with PV 22.13% on chromosome 7 were
identified. The QTL for grain Zn and Fe traits (ZPR, ZBR,
IPR, and IBR) were contributed from the donor parent
(Ranbir Basmati). A major QTL qSPY.7.1 (PV 25.74%) was
identified for SPY on chromosome 7 contributed by the
recipient parent (PR116). Six QTLs for TW and AOC_TW
such as qTW.1.1, qTW.3.1, qTW.6.1, qTW.7.1, qTW.7.2, and
qTW.12.1 were identified spread over chromosomes 1, 3, 6,
7, and 12 with PV ranging from 4.99 to 36.93%. qTW.7.1
with the highest PV (36.93%) among identified QTLs for TW
was contributed by the recipient parent (PR116). Another
QTL, qPH.1.1 (PV 23.06%), was identified on chromosome 1
with for PH contributed by the donor parent. A major QTL
qAOC_NT.12.1 for AOC_NT (PV 25.16%) on chromosome 12
was identified (Table 5).

Epistatic Interaction Analysis
44 RILs With SNP and BLUE
A total of 28 epistatic interactions (PV 3.73 to 18.16%) were
identified for five traits (ZBR, IPR, SPY, TW, and DFF) in

the subset of 44 RILs with SNP_BLUE. Interestingly, out of
five epistatic interactions for ZBR (>10 PV%), the locus on
chromosome 1 has interacted with the locus on chromosome
2, which in turn has also shown interactions with four loci
on chromosomes 5, 6, 7, and 10 (Figure 4). Interactions
were also observed for AOC_ZBR on chromosome 3 with
two loci of chromosomes 9 and 10, and another AOC_QTL
for ZBR on chromosome 5 interacted with chromosome 10.
A di-genic epistatic interaction within two loci of chromosome
5 was observed for AOC_QTL for IPR (PV 11.43%). Four
epistatic interactions for SPY were found between two loci of
chromosome 5; chromosome 1 with chromosome 3; and two loci
of chromosome 2 and chromosome 2 with chromosome 10. For
TW, a di-genic epistatic interaction with PV 15.57% was observed
between chromosomes 1 and 9. Three interactions were noted for
DFF between chromosomes 2 and 11 (PV 17.61%), chromosomes
4 and 7 (PV 18.16%), and within chromosome 12 (PV 17.1%)
(Supplementary Table 21).

QTLs for Quality and Phytate (Single Environment)
With SSRs, major QTLs were identified for water uptake, kernel
length after cooking, and elongation ration as qWU.9.1 (PV
55.7%), qKLAC.1.1 (PV 41%), and qER.9.1 (PV 49.3%) from the
donor parent and a moderate QTL as qWU.8.1 (PV 21.74%)
from the recipient parent. A major QTL for inorganic phosphate
was also identified IP (qIP.9.1: PV 44.1%) from the recipient
parent. Several minor QTLs < 10% for KL, ASV, and AC were
also observed. Using SNPs, several major and moderate QTLs
for hulling, milling, kernel breadth, kernel length/breadth ratio,
and alkali spreading value were found as qHULL.4.1 (PV 46.7%),
qMILL.1.1 (PV 58.2%), KB and KL/KB ratio (qKB.3.1: PV 24.3%
and qKB.10.1: PV 22.1%), and qASV.6.1 (PV 28.65%) from
the recipient parent along with minor QTLs for water uptake.
Interesting major QTLs for phytic acid (qPA.2.1: PV 58.32%) and
total phytate (qTP.2.1: PV 50.6%) were identified from the donor
parent (Supplementary Tables 22, 23).

Common QTL
One common grain Zn QTL was identified between SSR and SNP
QTL in the present study. The SSR QTL for grain Zn, qZPR.2.1
(PV 11.3%) was located in the 20.7–25.9-Mb region. The SNP
QTL for grain Zn, qZBR.2.1 (PV 19.84%), was located within the
QTL region (21.5–21.6 Mb) identified by SSR on chromosome 2.

Co-localization of QTLs
Among the main SNP QTLs (PV > 10%), the region on
chromosome 1 (SNP_21667551–SNP_20715764) was identified
with ZPR and ZBR. The genomic region on chromosome 7
(SNP_22039667–SNP_26142260) has shown co-localization of
QTL for IPR, TW, and SPY (Table 5). Co-localization of SSR-
QTL was not observed in the present study.

Candidate Gene Analysis in the Identified QTLs of the
Present Study
Considering only the QTL for grain Zn and Fe content,
we found 0 to 901 candidate genes for SSR-QTL and 7 to
337 candidate genes for SNP-QTL. Several transporter genes
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FIGURE 4 | Epistatic interaction of SSR & AOC_SSR and SNP & AOC_SNP in 190 and 44 RILs using IciMapping v4.2.
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TABLE 5 | Identification of SNP based QTL in 44 RILs with SNP BLUE and AOC_BLUE.

S. no. Trait QTL Chr Position
(cM)

Marker interval LOD PV (%) Add Allele Region reported

1 ZPR qZPR.1.1 1 185 SNP_21667551–SNP_20715764 4.85 37.84 −2.27 Parent 2 Anuradha et al. (2012);
Dixit et al. (2019)

2 AOC_ZPR qAOC_ZPR.1.1 1 185 SNP_21667551–SNP_20715764 4.85 37.84 −10.35 Parent 2 Anuradha et al. (2012);
Dixit et al. (2019)

3 ZPR qZPR.11.1 11 658 SNP_27183634–SNP_24162931 2.53 15.47 −1.8 Parent 2

4 AOC_ZPR qAOC_ZPR.11.1 11 658 SNP_27183634–SNP_24162931 2.53 15.47 −8.19 Parent 2

5 ZBR qZBR.1.1 1 185 SNP_21667551–SNP_20715764 3.98 30.61 −1.78 Parent 2 Anuradha et al. (2012)

6 ZBR qZBR.2.1 2 861 SNP_21560813–SNP_21617658 2.69 19.84 −1.46 Parent 2

7 IPR qIPR.3.1 3 878 SNP_21240772–SNP_21185917 8.15 34.76 −0.68 Parent 2 Swamy et al. (2018b)

8 IPR qIPR.6.1 6 567 SNP_29657204–SNP_7127152 4.31 15.3 −0.5 Parent 2 Swamy et al. (2018b);
Zhang et al. (2018);
Dixit et al. (2019)

9 IPR qIPR.7.1 7 700 SNP_16328271–SNP_15892815 3.74 12.67 −0.41 Parent 2

10 AOC_IPR qAOC_IPR.7.2 7 79 SNP_28458370–SNP_28114223 3.56 15.62 11.05 Parent 1

11 AOC_IPR qAOC_IPR.11.1 11 541 SNP_4832736-SNP_22702777 5.76 31.65 −17.17 Parent 2 Swamy et al. (2018b);
Descalsota-Empleo
et al. (2019a)

12 IBR qIBR.5.1 5 158 SNP_24090722–SNP_24120920 4.16 33.03 −1.04 Parent 2 Kumar et al. (2019)

13 AOC_IBR qAOC_IBR.7.1 7 669 SNP_15070854–SNP_16328271 2.7 22.13 −9.58 Parent 2

14 SPY qSPY.7.1 7 546 SNP_26142260–SNP_26042960 2.82 25.74 1.73 Parent 1

15 AOC_SPY qAOC_SPY.7.1 7 546 SNP_26142260–SNP_26042960 2.75 25.41 5.71 Parent 1

16 TW qTW.1.1 1 41 SNP_2154375–SNP_41166535 11.13 19.14 −1.42 Parent 2 Hua et al. (2002); Yadav
et al. (2019)

17 AOC_TW qAOC_TW.1.1 1 41 SNP_2154375–SNP_41166535 11.12 19.16 −5.75 Parent 2 Hua et al. (2002); Yadav
et al. (2019)

18 TW qTW.3.1 3 22 SNP_28761809–SNP_28820037 4.16 4.99 0.7 Parent 1

19 AOC_TW qAOC_TW.3.1 3 22 SNP_28761809–SNP_28820037 4.16 5.01 2.82 Parent 1

20 TW qTW.6.1 6 346 SNP_3438050–SNP_1619620 8.24 12.17 1.07 Parent 1

21 AOC_TW qAOC_TW.6.1 6 346 SNP_3438050–SNP_1619620 8.22 12.14 4.33 Parent 1

22 TW qTW.7.1 7 293 SNP_22039667–SNP_23128031 15.9 36.93 1.88 Parent 1

23 AOC_TW qAOC_TW.7.1 7 293 SNP_22039667–SNP_23128031 15.88 36.92 7.61 Parent 1

24 TW qTW.7.2 7 645 SNP_430820–SNP_1144612 4.54 5.68 0.74 Parent 1

25 AOC_TW qAOC_TW.7.2 7 645 SNP_430820–SNP_1144612 4.53 5.68 2.99 Parent 1

26 TW qTW.12.1 12 373 SNP_9255551–SNP_26268577 6.41 9.03 −0.97 Parent 2

27 AOC_TW qAOC_TW.12.1 12 373 SNP_9255551–SNP_26268577 6.4 9.02 −3.94 Parent 2

28 PH qPH.1.1 1 794 SNP_35161125–SNP_36994155 2.55 23.06 −7.2 Parent 2 Yan et al. (1999);
Hemamalini et al.
(2000); Yadav et al.
(2019); Dixit et al.
(2019)

29 AOC_PH qAOC_PH.1.1 1 794 SNP_35161125–SNP_36994155 2.56 23.16 −8.73 Parent 2 Yan et al. (1999);
Hemamalini et al.
(2000); Yadav et al.
(2019); Dixit et al.
(2019)

30 AOC_NT qAOC_NT.12.1 12 108 SNP_16467324–SNP_18705365 2.64 25.16 −3.68 Parent 2

Chr, chromosome; QTL, quantitative trait loci; cM, centimorgan; PV, phenotypic variance explained; LOD, logarithm of the odds; Add, additive effect; AOC, advanced
over check; ZPR, zinc content in polished rice (ppm); ZBR, zinc content in brown rice (ppm); IPR, iron content in polished rice (ppm); IBR, iron content in brown rice
(ppm); SPY, single plant yield (g); TW, test weight (g); PH, plant height (cm); NT, number of tillers per plant; Parent 1, recipient parent (PR116); Parent 2, donor parent
(Ranbir Basmati).

were observed in the identified QTL regions (Supplementary
Tables 24, 25). WEGO analysis showed that the cation transport
integral to the membrane under the biological process to
be predominant with the candidate genes was identified in
the QTL regions (Supplementary Figure 15). The identified

putative candidate genes associated with mineral metabolism
were selected from the annotated candidate genes in the two
QTL regions. The role of two candidate genes in the Zn
metabolism was evaluated using Knetminer (see text footnote 6)
and also for the identification of relevant molecular functional
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pathways and temporal and spatial expression using RiceXPro
version 3.0 (see text footnote 7) (Supplementary Figure 16).
A network analysis of two genes using KnetMiner software
in major QTL qZPR.1.1, viz., Os01g0556700, encoding peptide
transporter PTR2, putative, expressed to be positioned within
21.03–21.04 Mb; and Os01g0560200 encoding vesicle transport
v-SNARE protein, putative, expressed to be positioned within
21.275–21.278 Mb8 from the QTL region of qZPR.1.1 and
qZBR.1.1 (20.71–21.66 Mb) on chromosome 1 showed the
linkage of the Os01g0556700 gene linked with two genes, nine
QTLs, and two molecular functions, viz., transport and symport
activities (Figure 5). The second gene Os01g0560200 was found
to be linked with 25 genes, nine QTLs, nine phenotype traits,
and 20 molecular functions (Supplementary Figure 17). These
candidate genes which were found to be tightly linked with
identified QTL are being further investigated.

Comparison of the Identified QTLs With Reported
QTLs
All the QTLs identified for grain Zn and Fe content using SSRs
coincided with the reported QTLs for earlier grain Zn and Fe
content of rice (Supplementary Table 26). Only two novel QTLs
(qZPR.11.1 and qIPR.7.1) were identified in the present study
with the remaining QTLs concurred with the reported QTLs for

8https://rapdb.dna.affrc.go.jp/

grain Zn and Fe (Supplementary Table 27). Out of several single
season QTLs identified for quality, SSR QTLs for ASV and AC
(qASV.1.1 and qASV.6.1; qAC.8.1 and qAC.9.1) and SNP QTLs
for AC (qAC.6.1 and qAC.6.2) coincided with the reported QTLs.
For SPY, only QTLs observed on chromosome 12 shared the
location with reported QTLs, while the remaining QTLs appear
to be novel. Interestingly, many QTLs identified for grain mineral
content coincided with reported QTLs for agro-morphological
traits, yield, and yield-related components. Another important
observation was the concurrence of identified QTLs for inorganic
phosphorus (IP), total phosphate (TP), and phytic acid (PA) with
the reported QTLs for yield and yield-related components and
total number of tillers (Supplementary Tables 28, 29).

DISCUSSION

As per the recent global nutrient database, availability of
micronutrients per day per person in South Asia is relatively
poor compared to the world’s availability9. More than 32%
of women across the world and 36.6% in Asia are estimated
to be anemic (FAO et al., 2019)10. One third of the world’s
population was reported to lack sufficient Zn nutrition (White

9https://nutrition.healthdata.org/global-nutrient-database
10https://globalnutritionreport.org/reports/global-nutrition-report-2018/

FIGURE 5 | Network analysis of candidate gene (Os01g0556700-peptide transporter PTR2, putative, expressed) in a majorQTLqZPR.1.1 using Knetminer.
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and Broadley, 2011). The climate change through elevated
CO2 has been also reported to be leading toward deficiencies
of Zn, protein, and Fe for women of reproductive age
and children (Smith and Myers, 2019). Out of suitable
agricultural interventions to address micronutrient malnutrition,
enriching grain micronutrient density through biofortification
and encouraging dietary diversity were suggested to be ideal and
long-term sustainable strategies (Bouis et al., 2019). For a staple
food crop like rice, any incremental increase of micronutrients
would have an impact on the malnutrition affecting most of
the developing countries with rice as the principal calorie food.
Enhancing micronutrient density in the staple crops, especially
in cereals, has been demonstrated through release of several
biofortified varieties across the world. In rice, a few biofortified
varieties with high grain Zn have been developed and released in
Asian countries (HarvestPlus and FAO, 2019). The released Zn-
biofortified rice varieties were developed using the conventional
breeding approach based on phenotyping for grain Zn and yield
(Nakandalage et al., 2016; Khan et al., 2019). The use of MAS
for major QTL-associated high grain Zn would be a focused
approach for accelerating the development of Zn-biofortified rice
varieties (Mahender et al., 2016). Based on the requirements and
bioavailability of Zn, the recommended target content in polished
biofortified rice grains has been enhanced to 28 ppm (Bouis and
Saltzman, 2017). To meet the enhanced levels of high grain Zn
in rice, identification and deployment of major QTLs would be
useful to increase the efficiency of the breeding program and
expedite the development of biofortified rice varieties with high
grain Zn. In our study using the RIL population, we could identify
two major QTLs for grain Zn using markers (SSRs and SNPs)
based on BLUE values, a common QTL for grain Zn content on
chromosome 2 across SSR and SNP maps, and also six promising
lines with high grain Zn (mean > 28.0 ppm in polished rice) and
yield (>20 g SPY).

A wide genetic variability within the RIL population for the
10 agro-morphological traits along with grain Zn and Fe was
observed across two/four environments, which is in congruence
of the published studies for grain Zn, Fe, yield, and other
agronomic traits in mapping populations (Dixit et al., 2019;
Calayugan et al., 2020). Continuous distribution of the studied
traits including grain Zn suggests involvement of several genes
leading to complex genetic action. Nine traits of the study
showed high heritability values suggesting the early generation
selection strategy for their improvement which also supported
the observations of earlier reports (Calayugan et al., 2020).
High heritability and variability for grain Zn values within the
RIL population of the present study indicate its suitability for
mapping. The grain Zn content in polished rice was found to be
relatively higher in the dry season with the maximum values up
to a recommended level of 28 ppm in the present study. Seasonal
variations for grain Zn content during wet and dry seasons were
observed as reported earlier (Swamy et al., 2018a; Descalsota-
Empleo et al., 2019a; Dixit et al., 2019). Six transgressive variants
obtained for grain Zn have also shown promising yield with SPY
of >20 g. Transgressive variation for grain Zn content in RIL
populations is possibly due to the pyramiding of the effects of
moderate and minor QTL from both parents as happens in most

of the quantitative traits (Lu et al., 2008; Gande et al., 2013; Zhang
et al., 2014; Yu et al., 2015).

Rice consists of hull and inner edible portion including
89–94% starchy endosperm, 1–2% pericarp, 4–6% seed coat
and aleurone, and 2–3% embryo (Juliano, 1972). Differential
accumulation of Zn and Fe in the different parts of rice grain
has been studied in detail (Liang et al., 2008; Lombi et al.,
2009; Hansen et al., 2012). A significant amount of nutritionally
important mineral elements accumulates in rice bran (embryo
and aleurone layers), whereas a lower amount (6–9%) is found
in the endosperm (Lamberts et al., 2007). Zinc is distributed
throughout the endosperm (Takahashi et al., 2009; Johnson,
2013), which because of its relatively large mass accounts for
75% of grain Zn (Wang et al., 2011). Zn is distributed from the
aleurone layer to the inner endosperm with more than one half
of the total Zn present in the endosperm; Fe is localized in the
aleurone layer (Iwai et al., 2012). The Fe concentration in the
bran is seven times higher than that of the hull and endosperm,
but Zn in the bran is only three times higher (Lu et al., 2013).
Thus, the low values observed in polished rice substantiated the
distribution of Fe in rice grain. Though a wide variation was
observed for grain Fe content in brown rice with a maximum
of 18 ppm, the range was limited up to 9.5 ppm in polished
rice (Majumder et al., 2019; Calayugan et al., 2020). Highly
significant positive correlations were obtained among ZPR, ZBR,
IPR, and IBR, which is expected owing to the common metabolic
pathways for uptake, assimilation, and translocation to the grains
(Stangoulis et al., 2007; Kumar et al., 2014; Xu et al., 2015; Bashir
et al., 2016; Swamy et al., 2018a; Descalsota-Empleo et al., 2019a;
Wattoo et al., 2019). Among the agro-morphological traits, only
days to 50% flowering has shown a moderate negative association
with grain Zn. Varied or contradicting correlations of grain Zn
with other agro-morphological traits across the studies involving
different mapping populations and environments underscore
the difficulty of breeding for high grain Zn (Jeong et al., 2019;
Calayugan et al., 2020). Among the correlations obtained between
the quality and grain Fe and Zn, the associations of IPR and
IBR with kernel length after cooking (KLAC) and elongation
ratio (ER) need further studies. The correlations of inorganic
phosphate (IP) with kernel breadth (KB) and head rice recovery
(HRR) also need to be validated.

The PCA clearly showed the role of four PCs (Eigen values
are≥1) contributing around 68% of variability. Nutritional traits
comprised the first and fourth PCs with yield-attributing traits
forming the second and third PCs underscoring the suitability of
the material generated in the study for the improvement of grain
nutrient content and yield. For a subset of 44 RILs, the first PC
was also mainly attributed by nutrient traits; the second and third
PCs were influenced by yield-attributing traits, and the fourth PC
was grouped by both yield and nutrient traits.

Stepwise regression analysis of 190 RILs revealed the
interdependence of ZPR, ZBR, IPR, and IBR for higher grain
Zn/Fe content in brown and polished rice and also PH and
GW for SPY. Differential control for grain Fe content with
TW was obtained as a negative factor in polished rice and as
a positive factor in brown rice, which could be because of the
volume-to-surface ratio of the rice grain and the area covered
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by the bran layer. The interesting observation from the stepwise
regression analysis in subset of 44 RILs with contrasting grain
Zn was the negative association of ZPR with SPY and ZBR
with SPY, PL, and TW. Grain Fe content of contrasting 44 RILs
has shown DFF and TW as negative factors and PL and ZPR
as positive factors in polished rice, and only ZPR as positive
factor in brown rice. It is also interesting to note that correlation
analyses indicated that DFF was negatively correlated with grain
Zn. Stepwise regression analyses also showed DFF as a negative
factor for Fe content in polished rice. The negative association
of SPY and ZBR and ZPR in the subset of 44 RILs through
stepwise regression analyses reiterated the negative association of
grain mineral content and yield. In general, there is a negative
association between grain Zn and yield; however, it is possible to
obtain desirable recombinants for grain Zn and yield as observed
in the present study.

Six promising RILs (G32, G17, G8, G18, G15, and G7)
were identified for ZPR with >28 ppm based on the stability
and G × E interaction analyses for the subset of 44 RILs
across four environments (E1–E4). For SPY, promising RILs
environment-wise (G1 and G17: wet season and G6: dry season)
as well as across environments were noted (G3 and G19). G17
found to be promising RIL for ZPR and SPY also (mean of
28.3 ppm for ZPR and 23.5 g for SPY). Though there is negative
association between high yield and grain Zn, the promising
lines were identified as in the present study with high grain
Zn and yield, though less in number, confirming the possibility
of obtaining their combination (Swamy et al., 2016; Pradhan
et al., 2020; Rao et al., 2020). G32 and G17 were also found
to be promising for ZBR as expected. Though for IBR, G32,
G3, and G18 were noted to be promising across environments
with more than 16 ppm, but for IPR, the donor parent was
found to be promising. Similarly, the best and stable performers
were identified for TW, PH, PL, NT, and DFF. Through
AMMI and GGE biplot models, the stable performers across the
environments were identified and the total phenotypic variance
was partitioned into individual factors (Gauch, 2006). In rice,
stable performers for yield were identified across environments
using AMMI and GGE (Balakrishnan et al., 2016, 2020). Through
the Which Won Where/What plot, common winners could
not be found across four environments for the 10 traits of
study which could be due to the variability of performance
of the RILs across wet and dry seasons. For rice grain Zn
and Fe, stability and G × E analyses are generally used for
identification of stable donors (Suwarto and Nasrullah, 2011;
Ajmera et al., 2017; Babu et al., 2020; Naik et al., 2020).
Considering the wide variability observed for the breeding lines
with high grain Zn and Fe, stability and G × E analyses are
being recently applied for selecting promising RILs in cereals.
The contribution of environmental variation for grain Fe and
Zn along with other agronomic traits in a RIL population of
sorghum was demonstrated through a genotype × environment
interaction, correlation, and GGE biplot analyses (Phuke et al.,
2017). Stable RILs with higher grain Fe and Zn content were
also identified in RILs of pearl millet using AMMI and GGE
biplot analyses (Singhal et al., 2018). Different stable breeding
lines were identified for different environments among eight

Zn biofortified lines through stability and G × E analyses
(Inabangan-Asilo et al., 2019).

Out of eight QTLs identified with 102 SSRs for five traits (ZPR,
IBR, SPY, PH, and DFF), only two QTLs were identified with
PV > 10%, viz., qZPR.2.1 (spanning 6.3 Mb region) and qIBR.5.1
(spanning 1.9 Mb). Several major and moderate QTLs for grain
Zn and Fe were identified using SSRs in rice (Anuradha et al.,
2012; Hu et al., 2016; Swamy et al., 2018b; Dixit et al., 2019).
Most of the reported QTLs based on SSRs need to be validated
in alternative mapping populations for their deployment in rice
biofortification.

Based on GBS analyses, 1035 polymorphic SNPs between
parents and subset of 44 RILs were used to construct a linkage
map in the present study. Though the subset of 44 RILs is a small
number, the subset has shown normal distribution for the Zn
content. The range of Zn content of the subset of 44 RILs was
11.5 to 31 ppm, and the range of 190 RILs was 11 to 31 ppm.
Also, it was also observed that the percentage of 190 RILs with
Zn content was >20 ppm was 49.5% and <20 ppm was 51.5%
(1:1 ratio). A similar distribution of Zn content was also observed
in the subset of 44 RILs as >20 (50%) and <20 ppm (50%) (1:1
ratio). Thus, the assumption was that the subset of 44 RILs was
the representation of 190 RILs for GBS analyses. In the present
study, the less number of RILs subjected to GBS and subsequent
QTL identification was compensated by the phenotype data of
44 RILs from four environments and extensive coverage of 12
chromosomes with 1305 SNP data points. Earlier linkage maps
for identifying QTL associated with grain Zn reported SNPs
ranging only from 296 to 541 (Swamy et al., 2018a; Descalsota-
Empleo et al., 2019a; Calayugan et al., 2020). Out of 16 major
QTLs (PV > 10%) from 19 QTLs identified with SNPs, only 11
QTLs were further analyzed for candidate genes as the interval
was too large for two QTLs. The physical position of the identified
QTLs in the rice genome spanned only a region of 0.1 to 3 Mb,
which makes the QTL amenable to marker-assisted introgression
to the genotypes with desirable background. The major QTLs
on qZPR.1.1 (PV 37.84%) and qZPR.11.1 (PV 15.47%) identified
in the present study can be deployed in the breeding program
for high grain Zn as it is consistent across the environments
(seasons). QTLs for grain Zn/Fe were mostly reported in brown
rice (Stangoulis et al., 2007; Garcia-Oliveira et al., 2009; Du et al.,
2013; Kumar et al., 2014; Zhang et al., 2014) and a few in polished
rice (Lu et al., 2008; Yu et al., 2015). Only one study identified
QTLs for brown and polished rice in the Backcross Inbred Line
mapping population of Oryza sativa × O. rufipogon (Yu et al.,
2015), however with no common QTLs between brown and
polished rice have been found. Since in our study we mapped
QTLs for brown and polished rice, the identified consistent
major QTL qZPR.1.1 (PV 37.84%) overlapping with qZBR.1.1
(PV 30.61%) QTL reinforced the location of QTL for grain Zn.

Though QTLs were identified for 190 RILs with 102 SSR
markers and 44 RILs with 1035 SNPs in the present study,
only one common QTL on chromosome 2 for grain Zn was
found across the SNP map (qZBR.2.1: PV 19.84%) (21.5–21.6-Mb
region) and the SSR map (qZPR.2.1: PV 11.3%) (20.7–25.9-Mb
region). Between the two environments for SSRs (E1, E2 for SSR)
and among the four environments for SNP (E1, E2, E3, and
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E4 for SNP), we found some common QTLs. However, when
the BLUEs were considered for the identification of QTLs, the
number of common QTLs was very less. The probable reasons
for not finding common QTLs between SSR and SNP could be
attributed to the number of environments included in the QTLs
of SNP analyses. Adding of two more environments E3 and E4
has reduced the common QTLs. Since BLUEs were advised for
the identification of major and stable QTLs for grain Zn content
(Calayugan et al., 2020), two more environments (E3 and E4)
were added for the identification of stable SNP QTLs.

Zn and Fe are needed as essential mineral elements to the plant
for its growth and development (Palmer and Guerinot, 2009);
thus, an optimum concentration of grain Zn and Fe is always
present in rice. Hence, we have included additional parameter
as advantage over check (AOC) to the 10 traits of study for
identification of QTLs. The rationale behind AOC, especially for
grain Zn and Fe traits, is an optimum level of Zn and Fe which
are present in the endosperm by default controlled by a set of
genes/QTLs. Any additional amount of Zn/Fe in polished could
be due to either different alleles of the same set of genes or
different genes. Thus, two new AOC QTLs were identified with
SSRs and three novel QTLs were observed with SNPs, suggesting
AOC as a promising approach for identifying QTLs for grain
mineral content.

Quantitative trait loci covering most of the chromosomes were
reported for grain Fe and Zn in various biparental mapping
populations as in F2, RILs, doubled haploid (DH), back cross
inbred lines, and introgression lines (Stangoulis et al., 2007;
Garcia-Oliveira et al., 2009; Anuradha et al., 2012; Kumar et al.,
2014; Zhang et al., 2014; Xu et al., 2017; Swamy et al., 2018b;
Descalsota-Empleo et al., 2019b). Most of the reported QTLs
could not be deployed in breeding for biofortified rice varieties as
they are genotype and environment specific. Analyses for QTLs
using BLUEs enhanced the rigor of the identified QTL for their
utility in breeding program of biofortification.

Nineteen significant digenic epistasis interactions (ZPR, ZBR,
AOC_IPR, IBR, SPY, TW, and DFF) were detected with
PV > 10% with SSR and SNP, suggesting the complex genetic
regulation for the traits of the study. However, none of the
identified digenic interactions were found to be involved with
main QTLs. Similar observations were earlier reported for
epistatic interactions for grain Zn in rice (Lu et al., 2008;
Norton et al., 2010; Zhang et al., 2014; Descalsota-Empleo et al.,
2019a). Involvement of main effect QTLs in epistatic interactions
suggests that the effect of single-locus QTL is mostly dependent
on the alleles of other loci (Lu et al., 2008). The identification
of main-effect QTL for grain Zn without association of epistatic
interactions is counter-intuitive because the grain Zn content
involves a complicated metabolic process of uptake, transport,
assimilation, and remobilization controlled by temporal and
spatial regulation of various genes (Bashir et al., 2016). Hence,
the identified main-effect QTL is being further characterized for
its genetic action.

Since the quality of rice grains is associated with nutritional
quality as the ratio of bran to endosperm (surface to volume)
which is greatly affected by grain shape (length, breadth,
thickness), data on grain quality and cooking quality were

included for the subset of 44 RILs in the present study. Grain
traits like weight, length, thickness, and breadth found to be
negatively correlated with grain Zn and Fe in rice (Jeong et al.,
2019). Co-localization of QTLs of grain mineral elements with
quality QTL was also reported (Zhang et al., 2014). Only grain
Fe has shown correlation with kernel length after cooking,
elongation ratio, and alkali spreading value based on single
environment data in our study. The role of grain Fe in cooking
quality needs confirmatory studies.

The total phosphate in the seed was studied as phytate
phosphate and inorganic phosphate in the subset of 44 RILs
of the present study. Myo-inositol 1,2,3,4,5,6-hexakisphosphate
(InsP6), commonly known as phytic acid (PA), is the principle
storage form of phosphorus (P) in cereal grains and may account
for 65–85% of the total seed P (Raboy et al., 2000). In rice grains,
approximately 70% of the total seed phosphorus is found in the
form of phytic acid with ∼80% more present in the aleurone
and pericarp and less than 10% in the embryo (O’Dell et al.,
1972; Iwai et al., 2012). The remaining P is in the form of
soluble inorganic phosphate (Pi: approximately 5%) and cellular
P (approximately 10 to 20% of the total seed P), which is found
in nucleic acids, proteins, lipids, and sugars (Larson et al., 2000).
Expected correlations were observed between phytic acid and
total phosphate among the subset of 44 RILs in the present study.
PA is negatively charged and, thus, strongly chelates cations
such as Fe and Zn and usually exists as mixed salts referred
to as phytate or phytin in cereals (Raboy, 2009). Most notably,
Zn and Fe deficiencies are reported to be linked to high PA
intake (Al Hasan et al., 2016). Two QTLs for PA content were
earlier identified to chromosomes 5 and 12 explaining 24%
and 15% of the total phenotypic variation (Stangoulis et al.,
2007). Unlike the study of Stangoulis et al. (2007), neither
correlation with grain Zn/Fe nor co-localization with grain
Fe/Zn QTLs was found in our study. The grain Zn and its
association with phytate in the mapping populations need to be
elucidated in future.

Several-candidate-gene-associated transporter activity
was observed in the identified QTL; based on the network
analyses in the present study, we narrowed down to two
genes in the identified QTL and gene-associated nutrient
homeostasis. The genes are being functionally characterized.
Though information on grain Zn and Fe metabolism genes
is available to some extent, genes associated with uptake,
transport, assimilation, and remobilization of Zn and Fe
still need to be characterized in rice. The concurrence
of the identified QTLs with the reported QTLs reiterates
rigor of the identified QTLs, at the same time novel
QTLs explaining high phenotypic variance are useful for
deployment in the breeding programs and identification
of new genes associated with high grain Zn (Kawakami
and Bhullar, 2018). The two RILs from the present study
with the promising QTLs for grain Zn in polished rice and
yield, viz., RP6211-PR/RIL-Q8 and RP6211-PR/RIL-Q181,
have been selected and nominated to evaluation during wet
season2020 under Biofortification trial of All India Coordinated
Rice Improvement Programme, national varietal release
program in India.
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CONCLUSION

In conclusion, the RIL population of the study showed
wide variation for agro-morphological traits, yield, grain Fe,
and Zn across environments. Through stepwise regression
analyses, factors among the agro-morphological and yield traits
affecting the grain Zn and Fe were identified. Through AMMI,
performance of RILs was analyzed for their stability across
environments. The promising RILs, thus identified with grain
Zn in polished rice >28 ppm and 20 g single plant yield, were
nominated in the national evaluation programs for biofortified
rice varieties. Several QTLs have been identified for agro-
morphological traits, yield, and grain Fe and Zn using SSRs
and SNPs. Inclusion of both brown and polished rice along
with advantage over check strengthened the analyses of QTL
in the present study. QTLs were also identified for single-
season data of grain quality along with total seed phosphorus
in the subset of RILs. Two major QTLs for grain Zn in
polished rice spanning only <3 Mb genomic fragment offers
scope for their deployment in rice biofortification. The potential
of the two candidate genes in the QTLs were confirmed by
network analyses.
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